Ethanol Answers the EPA’s Low-Sulfur Gasoline Regulations

Ethanol Answers the EPA’s Low-Sulfur Gasoline Regulations | 04/05/2013
by John Brian Shannon John Brian Shannon

The EPA’s proposed Tier 3 rule would cut sulfur levels in American gasoline by two-thirds, and by 2018 the new standard could be fully implemented.

According to the EPA, introducing and enforcing the new regulations would cost $3.4 billion between now and 2018, but Americans would save $23 billion in health care and environmental costs — amounting to a net savings of $19.6 billion dollars over that time.
Midwest Renewable Energy generates fuel-grade ethanol via natural fermentation and distillation of corn, primarily for blending with gasoline and other fuels. Image courtesy of: Midwest Renewable Energy, LLC

EPA is proposing the Tier 3 standards to address public health issues that currently exist and are projected to continue in the future as requested in a May 21, 2010 Presidential memorandum.

[From Section 2.1]

“Over 158 million Americans are currently experiencing unhealthy levels of air pollution which are linked with adverse health impacts such as hospital admissions, emergency room visits, and premature mortality. Motor vehicles are a particularly important source of exposure to air pollution, especially in urban areas.”

[From Section 2.4]

“EPA is also proposing that federal gasoline contain no more than 10 parts per million (ppm) of sulfur on an annual average basis by January 1, 2017.

In addition, EPA is proposing to either maintain the current 80-ppm refinery gate and 95-ppm downstream caps or lower them to 50 and 65 ppm, respectively.

The proposed Tier 3 gasoline sulfur standards are similar to levels already being achieved in California, Europe, Japan, South Korea, and several other countries.” – U.S. EPA 

Longer longer life-expectancy for citizens, a better quality-of-life and lower acid rain levels will result from this new regulation standard — benefiting many Americans while lessening the damage caused by acid rain to national infrastructure.

Acid rain translates into crop damage, forest ecosystem damage like ‘crowning’ on trees and ‘spalling’ on concrete structures (especially historic concrete structures like the Brooklyn Bridge, for one example) which are caused solely by acid rain — whether from anthropogenic (man-made) sources, or from volcanoes and forest fires.

Read here about anthropogenic acid rain damage to the bronze statues at Harvard University.
Image courtey:

Simply increasing the percentage of ethanol in gasoline will allow oil companies to meet the new regulations

All new cars and light trucks sold in the U.S.A. from 1990 onwards are able to run up to 85% ethanol with no harm to the engine or other components.

The EPA refers to the proposed new regulations as “common-sense standards” that will save American lives and money

The oil and gas industry are attempting to influence public opinion by saying they must now invest $10 billion in new infrastructure, (one-time cost) and spend $2.4 billion per year to cover the increased operating costs to implement the standards — resulting in an increased price at the pump of 9 cents per gallon.

Others such as the U.S. auto industry are concerned with the proposal, saying European-style gasoline prices could be the end result. – (newsletter)

Instead of spending billions on unproven and expensive technology to solve this problem, simply blending-in a larger percentage of bio-ethanol neatly solves the problem of sulfur content in gasoline. And as ethanol and bio-ethanol are already part of the petroleum feedstock, no other alterations are required to increase the percentage of ethanol in gasoline.

A happy coincidence related to this problem and its implementation timeline is that new bio-ethanol supply streams are already available.

In addition to the successful algae and camelina bio-fuel projects which the EIA, the U.S. Navy, Boeing, and Virgin Atlantic have all reported excellent results with — these organizations are now developing large scale biofuel supplies to fuel their fleets.

Boeing’s (SBRTP) Sustainable Biofuels Research & Technology Program reported up to 80% lower CO2 emissions when compared to petroleum-sourced jet fuel.” – Huffington Post

A second-generation bio-fuel, switchgrass — along with other crops which grow well in poor soils and are tolerant of drought conditions are becoming available to farmers who are able to grow this bio-fuel crop on marginal land and with little water usage.

Switchgrass (a tall, native, coarse grass of the American prairie) is being cultivated in the U.S. for bio-ethanol production at experimental facilities and new enzymes and harvesting techniques are showing good results.

Regarding 3rd generation biofuels, ethanol from algae shows record-smashing potential

Algae can produce up to 300 times more oil per unit area than conventional [biofuel] crops such as rapeseed, palms, soybeans, or jatropha.

As algae have a harvesting cycle of 1–10 days, their cultivation permits several harvests in a very short time-frame, a strategy differing from that associated with yearly crops (Chisti 2007).

Algae can grow on land unsuitable for other established crops, for instance: arid land, land with excessively saline soil, and drought-stricken land.

This minimizes the issue of taking away pieces of land from the cultivation of food crops (Schenk et al. 2008). Algae can grow 20 to 30 times faster than food crops. – Wikipedia

Simply stated, the solution to lower sulfur content in gasoline is to increase bio-ethanol production. Farmers have plenty of marginal lands and will be quite happy to hear about the proposed EPA regulations

It can become a ‘win-win’ situation for everyone if we move towards the obvious policies that take us into conformance with the EPA’s proposed new regulations.