Halophytes: Growing food and biofuel in coastal desert regions

Originally published at johnbrianshannon.com
by John Brian Shannon John Brian Shannon

What could be better than creating rich cropland out of the world’s desert regions?

It’s a tempting idea. Some 33% of the world’s landmass is covered with desert landscape and 40,000 miles of coastlines are adjoining deserts. Nothing but ocean, sun, and sand. But in those hostile regions, some prototype halophyte farming projects have scored significant successes.

NASA - Earth with Global Deserts
Looking for a place to grow Halophytes? Coastal desert regions are your best bet. NASA – Earth with Global Deserts

Halophytes for human food, for livestock feed, and for biofuel production

Whether halophyte crops are grown for food (the ‘tenders’ or ‘leaves’ of the plant have a light nutty and salty taste) or to feed livestock (the stalks) or for biofuel production, growing these crops along coastal regions restores plant life to desert areas adjoining the ocean.

Exclusive report – Boeing reveals “the biggest breakthrough in biofuels ever” (Energy Post EU)

A land plan that grows halopyhtes food for humans/livestock feed and for biofuel production will produce the best economic result

“Integrating those two systems you get sustainable aquaculture that does not pollute the oceans and biomass that can be used for fuels” — Darrin L. Morgan

As a bonus in poverty-stricken lands, dried halophytes (branches/roots) can serve as an infinitely cleaner cookstove fuel than what is presently used in such areas — which is often dried livestock dung or expensive kerosene.

Halophytes are those crops which are salt-tolerant and can survive the blistering heat of the world’s deserts. Many of the crops we presently grow have salt-resistant cousins — all they need is trenches or pipelines to deliver the water inland from the sea.

Halophytes negate the need to remove the high salt content of ocean water which in itself, is a very costly proposition with desalination plants costing millions of dollars.

‘Plants called halophytes show even more promise than we expected.’ Image courtesy of the Sustainable Bioenergy Research Consortium (SBRC) affiliated with the Masdar Institute of Science and Technology in Abu Dhabi.
‘Plants called halophytes show even more promise than we expected.’ Image courtesy of the Sustainable Bioenergy Research Consortium (SBRC) affiliated with the Masdar Institute of Science and Technology in Abu Dhabi.

As halophyte farms become established they improve the growing conditions for non-halophyte plants

Most deserts are sand, which means all that is required to begin creating usable farmland is startup funding, farm machinery, a field plan and seeds, and of course, plenty of farm labourers.

Creating Wealth out of Sand and Seawater

Some of the poorest places on the planet are also ‘rich’ in deserts and are located near plentiful salt water resources, making them suitable candidates for halophyte farming. Economic benefits for poor countries are stable growth, lower unemployment, better balance-of-trade and less reliance on foreign food aid programmes.

If you can grow your own food at low cost, why buy it from other countries?

Halophytes Greening Eritrea Part I (Martin Sheen narrates the early days of Eritrea’s very successful halophyte farming and inland seafood production)

Halophytes Greening Eritrea Part II

Seawater irrigation agriculture projects for deserts (completely rainless regions)

2012 Yuma, Arizona Salicornia planting

Sahara Forest Project: From vision to reality

University of Phoenix Seawater Farming Overview

Growing Potatoes using Saltwater Farming Techniques in the Netherlands

Other successful examples exist in other coastal regions around the world

Helping to mitigate global sea level rises due to climate change, creating powerful economic zones out of desert, seawater and labour, lowering unemployment in poverty-stricken nations, removing carbon from the atmosphere and returning it to the soil, all while dramatically increasing crop and seafood production are all benefits of growing halophytes in coastal desert regions of the world.

Stage I Coastal Desert transformation

The first 25,000 miles of coastal desert out of a grand total of 40,000 miles of coastal desert globally can be converted to this kind of farming simply by showing up and using existing simple technologies/cultivation methods and seed varieties.

Stage II Coastal Desert transformation

The other 15,000 miles of coastal desert regions could be viewed as Stage II of this process after the best candidate areas become fully cultivated, as these secondary regions may require more capital investment for conversion due to their somewhat more inland locations.

Huge opportunity awaits early investors in this rediscovered agricultural market. Cheap land, free ocean water, low cost seeds and local labour, and a reputation as businesspeople who can solve local problems add value and employment to poverty-stricken regions, and lead growing nations forward, look promising for seawater/halophyte farming owner/operators and investors.

Further Reading

South African Airways switching to tobacco biofuel in 2015

South African Airways switching to tobacco biofuel in 2015 | 10/12/14
Originally posted at www.southafrica.info

South African farmers would soon harvest their first crop of energy-rich tobacco plants, an important step towards using the plants to make sustainable aviation biofuel, South African Airways (SAA) and American aeroplane maker Boeing announced yesterday.

Solaris plantation in South Africa
Solaris plants, a new hybrid type of tobacco plant, at a test farm in South Africa’s Limpopo province (Photo: SkyNRG)

SAA and Boeing, along with partners SkyNRG and Sunchem SA, also officially launched Project Solaris, their collaborative effort to develop an aviation biofuel supply chain using a nicotine-free, GMO-free tobacco plant called Solaris.

Company representatives and industry stakeholders visited commercial and community farms in Marble Hall, Limpopo Province, where 50 hectares of Solaris have been planted.

The test crop will be harvested for the first time in December.

Oil from the plant’s seeds may be converted into bio-jet fuel as early as 2015, with a test flight by SAA as soon as practicable.

Sustainable

SAA continues to work towards becoming the most environmentally sustainable airline in the world and is committed to a better way of conducting business. — Ian Cruickshank, the airline’s environmental affairs specialist

It plans to scale-up its use of biofuels for its flights to 20-million litres in 2017, before reaching 400-million litres by 2023.

The impact that the biofuel programme will have on South Africans is astounding: thousands of jobs, mostly in rural areas; new skills and technology; energy security and stability; and macro-economic benefits to South Africa; and, of course, a massive reduction in the amount of CO2 that is emitted into our atmosphere. — Ian Cruickshank

Lower costs

It would also lower the fuel costs of SAA, which contributed between 39% and 41% of the state-owned airline’s total operating costs.

It is very exciting to see early progress in South Africa towards developing sustainable aviation biofuel from energy-producing tobacco plants.

Boeing strongly believes that our aviation biofuel collaboration with South African Airways will benefit the environment and public health while providing new economic opportunities for South Africa’s small farmers.

This project also positions our valued airline customer to gain a long-term, viable domestic fuel supply and improve South Africa’s national balance of payments. — J. Miguel Santos, Boeing International managing director for Africa

Collaboration

The farm visits followed the announcement in August that SAA, Boeing and SkyNRG, an international market leader for bio-jet fuel, based in the Netherlands, were collaborating to make aviation biofuel from the Solaris plant, which was developed and patented by Sunchem Holding, a research and development company based in Italy.

If the test farming in Limpopo is successful, the project will be expanded in South Africa and potentially to other countries.

In coming years, emerging technologies are expected to increase aviation biofuel production from the plant’s leaves and stems.

Sustainable aviation biofuel made from Solaris plants can reduce lifecycle carbon emissions by 50% to 75%, ensuring it meets the sustainability threshold set by the Roundtable on Sustainable Biomaterials (RSB).

Test flights

Airlines have conducted more than 1600 passenger flights using aviation biofuel since the fuel was approved for commercial use in 2011.

  • Boeing is an industry leader in global efforts to develop and commercialise sustainable aviation biofuel.
  • Project Solaris began in 2012 with two hectares of crop, rising to 11 hectares in 2013, before expanding to the current 50 hectares.
  • The partners aim to expand the project to 30,000 hectares by 2020, leading to the production of 140,000 tons of jet fuel, the creation of 50,000 direct jobs and a reduction of 267 kt of CO2 emissions.
  • They envisage 250 000 hectares by 2025, according to SkyNRG chief technology officer Maarten van Dijk.

SAinfo reporter and Boeing
Read more here

Related Websites:

Etihad Airways says 100% Biofuel Flights Within Five Years

by Nathan

The United-Arab-Emirates-based aviation heavyweight Etihad Airways will soon be offering regular 100%-biofuel-powered commercial flights throughout the region, according to recent comments made by Chief Operations Officer Richard Hill.

Biofuel flights using 100% biofuel are less than 5 years away, says Etihad Airways.
Biofuel flights using 100% biofuel are less than 5 years away, says Etihad Airways. Image Credit: Airplane taking off via Shutterstock

This strong push towards greater biofuel-use by the airline is being supported by the creation of the new BIOjet Abu Dhabi project — a partnership with the French energy firm Total, and the world-renowned aircraft-producer Boeing, with the aim of developing aviation biofuels in the United Arab Emirates.

The new project was announced at a recent press conference celebrating the success of a recent UAE-produced-bio-kerosene-powered flight (partly powered with biofuels, not fully) — the first such flight.

The 45-minute flight was the latest step towards operating commercial flights using biofuels. — Chief operations officer at Etihad, Richard Hill

He also stated that he expected the first of such commercial flights to be offered within the next five years.

Working with Abu Dhabi-based renewable energy company Masdar, the group intends to develop a supply chain that will bring aviation biofuel production and refining capabilities to the oil-rich nation.

Masdar is currently developing salt-tolerant plants that could provide the raw material for the renewable fuel. It is hoped that species such as salicornia could be grown in coastal areas, allowing for large scale production of energy crops that could be grown without impacting scarce water supplies in the region.

However, agricultural waste and date palm leaves are also being considered as potential feed stocks for the project. Creating fuel from sustainable sources would help Etihad curb its carbon emissions, the company said.

In collaboration with our key partners, our goal is to support and help drive the commercialisation of sustainable aviation fuel in Abu Dhabi, the region and also globally.

We have made some important first steps in this process and our continued focus will be to develop further initiatives such as this which will facilitate the availability of sustainable aviation biofuels for Etihad Airways in the coming years. — James Hogan, president and chief executive of Etihad

For more backstory on this breakthrough, check out: Boeing Biofuel Breakthrough — This Is A BIG Deal (Interview With Boeing’s Biofuel Director).

This article, Biofuel Flights Within Five Years, Says Head Of Etihad Airways, is syndicated from Clean Technica and is posted here with permission.

About the Author

Nathan — For the fate of the sons of men and the fate of beasts is the same; as one dies, so dies the other. They all have the same breath, and man has no advantage over the beasts; for all is vanity. – Ecclesiastes 3:19